309 research outputs found

    Correcting the Site Frequency Spectrum for Divergence-Based Ascertainment

    Get PDF
    Comparative genomics based on sequenced referenced genomes is essential to hypothesis generation and testing within population genetics. However, selection of candidate regions for further study on the basis of elevated or depressed divergence between species leads to a divergence-based ascertainment bias in the site frequency spectrum within selected candidate loci. Here, a method to correct this problem is developed that obtains maximum-likelihood estimates of the unascertained allele frequency distribution using numerical optimization. I show how divergence-based ascertainment may mimic the effects of natural selection and offer correction formulae for performing proper estimation into the strength of selection in candidate regions in a maximum-likelihood setting

    Functional Annotation and Comparative Analysis of a Zygopteran Transcriptome

    Get PDF
    In this paper we present a de novo assembly of the transcriptome of the damselfly (Enallagma hageni) through the use of 454 pyrosequencing. E. hageni is a member of the suborder Zygoptera, in the order Odonata, and Odonata organisms form the basal lineage of the winged insects (Pterygota). To date, sequence data used in phylogenetic analysis of Enallagma species have been derived from either mitochondrial DNA or ribosomal nuclear DNA. This Enallagma transcriptome contained 31,661 contigs that were assembled and translated into 14,813 individual open reading frames. Using these data, we constructed an extensive dataset of 634 orthologous nuclear protein-encoding genes across 11 species of Arthropoda and used Bayesian techniques to elucidate the position of Enallagma in the arthropod phylogenetic tree. Additionally, we demonstrated that the Enallagma transcriptome contains 169 genes that are evolving at rates that differ relative to those of the rest of the transcriptome (29 accelerated and 140 decreased), and, through multiple Gene Ontology searches and clustering methods, we present the first functional annotation of any palaeopteran\u27s transcriptome in the literature

    GC-Biased Evolution Near Human Accelerated Regions

    Get PDF
    Regions of the genome that have been the target of positive selection specifically along the human lineage are of special importance in human biology. We used high throughput sequencing combined with methods to enrich human genomic samples for particular targets to obtain the sequence of 22 chromosomal samples at high depth in 40 kb neighborhoods of 49 previously identified 100–400 bp elements that show evidence for human accelerated evolution. In addition to selection, the pattern of nucleotide substitutions in several of these elements suggested an historical bias favoring the conversion of weak (A or T) alleles into strong (G or C) alleles. Here we found strong evidence in the derived allele frequency spectra of many of these 40 kb regions for ongoing weak-to-strong fixation bias. Comparison of the nucleotide composition at polymorphic loci to the composition at sites of fixed substitutions additionally reveals the signature of historical weak-to-strong fixation bias in a subset of these regions. Most of the regions with evidence for historical bias do not also have signatures of ongoing bias, suggesting that the evolutionary forces generating weak-to-strong bias are not constant over time. To investigate the role of selection in shaping these regions, we analyzed the spatial pattern of polymorphism in our samples. We found no significant evidence for selective sweeps, possibly because the signal of such sweeps has decayed beyond the power of our tests to detect them. Together, these results do not rule out functional roles for the observed changes in these regions—indeed there is good evidence that the first two are functional elements in humans—but they suggest that a fixation process (such as biased gene conversion) that is biased at the nucleotide level, but is otherwise selectively neutral, could be an important evolutionary force at play in them, both historically and at present

    Highly Constrained Intergenic Drosophila Ultraconserved Elements Are Candidate ncRNAs

    Get PDF
    Eukaryotes contain short (∼80–200 bp) regions that have few or no substitutions among species that represent hundreds of millions of years of evolutionary divergence. These ultraconserved elements (UCEs) are candidates for containing essential functions, but their biological roles remain largely unknown. Here, we report the discovery and characterization of UCEs from 12 sequenced Drosophilaspecies. We identified 98 elements ≥80 bp long with very high conservation across the Drosophila phylogeny. Population genetic analyses reveal that these UCEs are not present in mutational cold spots. Instead we infer that they experience a level of selective constraint almost 10-fold higher compared with missense mutations in protein-coding sequences, which is substantially higher than that observed previously for human UCEs. About one-half of these Drosophila UCEs overlap the transcribed portion of genes, with many of those that are within coding sequences likely to correspond to sites of ADAR-dependent RNA editing. For the remaining UCEs that are in nongenic regions, we find that many are potentially capable of forming RNA secondary structures. Among ten chosen for further analysis, we discovered that the majority are transcribed in multiple tissues of Drosophila melanogaster. We conclude that Drosophilaspecies are rich with UCEs and that many of them may correspond to novel noncoding RNAs

    Variation resources at UC Santa Cruz

    Get PDF
    The variation resources within the University of California Santa Cruz Genome Browser include polymorphism data drawn from public collections and analyses of these data, along with their display in the context of other genomic annotations. Primary data from dbSNP is included for many organisms, with added information including genomic alleles and orthologous alleles for closely related organisms. Display filtering and coloring is available by variant type, functional class or other annotations. Annotation of potential errors is highlighted and a genomic alignment of the variant's flanking sequence is displayed. HapMap allele frequencies and linkage disequilibrium (LD) are available for each HapMap population, along with non-human primate alleles. The browsing and analysis tools, downloadable data files and links to documentation and other information can be found at

    Discovery of Ongoing Selective Sweeps within Anopheles Mosquito Populations Using Deep Learning.

    Get PDF
    Identification of partial sweeps, which include both hard and soft sweeps that have not currently reached fixation, provides crucial information about ongoing evolutionary responses. To this end, we introduce partialS/HIC, a deep learning method to discover selective sweeps from population genomic data. partialS/HIC uses a convolutional neural network for image processing, which is trained with a large suite of summary statistics derived from coalescent simulations incorporating population-specific history, to distinguish between completed versus partial sweeps, hard versus soft sweeps, and regions directly affected by selection versus those merely linked to nearby selective sweeps. We perform several simulation experiments under various demographic scenarios to demonstrate partialS/HIC's performance, which exhibits excellent resolution for detecting partial sweeps. We also apply our classifier to whole genomes from eight mosquito populations sampled across sub-Saharan Africa by the Anopheles gambiae 1000 Genomes Consortium, elucidating both continent-wide patterns as well as sweeps unique to specific geographic regions. These populations have experienced intense insecticide exposure over the past two decades, and we observe a strong overrepresentation of sweeps at insecticide resistance loci. Our analysis thus provides a list of candidate adaptive loci that may be relevant to mosquito control efforts. More broadly, our supervised machine learning approach introduces a method to distinguish between completed and partial sweeps, as well as between hard and soft sweeps, under a variety of demographic scenarios. As whole-genome data rapidly accumulate for a greater diversity of organisms, partialS/HIC addresses an increasing demand for useful selection scan tools that can track in-progress evolutionary dynamics

    Parallel Geographic Variation in Drosophila melanogaster

    Get PDF
    Drosophila melanogaster, an ancestrally African species, has recently spread throughout the world, associated with human activity. The species has served as the focus of many studies investigating local adaptation relating to latitudinal variation in non-African populations, especially those from the United States and Australia. These studies have documented the existence of shared, genetically determined phenotypic clines for several life history and morphological traits. However, there are no studies designed to formally address the degree of shared latitudinal differentiation at the genomic level. Here we present our comparative analysis of such differentiation. Not surprisingly, we find evidence of substantial, shared selection responses on the two continents, probably resulting from selection on standing ancestral variation. The polymorphic inversion In(3R)P has an important effect on this pattern, but considerable parallelism is also observed across the genome in regions not associated with inversion polymorphism. Interestingly, parallel latitudinal differentiation is observed even for variants that are not particularly strongly differentiated, which suggests that very large numbers of polymorphisms are targets of spatially varying selection in this species

    Pre-exposure prophylaxis with OspA-specific human monoclonal antibodies protects mice against tick transmission of Lyme disease spirochetes

    Get PDF
    Background. Tick transmission of Borrelia spirochetes to humans results in significant morbidity from Lyme disease worldwide. Serum concentrations of antibodies against outer surface protein A (OspA) were shown to correlate with protection from infection with Borrelia burgdorferi, the primary cause of Lyme disease in the United States. Methods. Mice transgenic for human immunoglobulin genes were immunized with OspA protein of B. burgdorferi to generate human monoclonal antibodies (HuMabs) against OspA. HuMabs were generated and tested in in vitro borreliacidal assays and animal protection assays. Results. Nearly 100 unique OspA specific HuMabs were generated and four HuMabs (221-7, 857-2, 319-44, and 212-55) were selected as lead candidates based on borreliacidal activity. HuMab 319-44, 857-2 and 212-55 were borreliacidal against one or two Borrelia genospecies, whereas 221-7 was borreliacidal (IC50 \u3c 1nM) against B. burgdorferi, B. afzelii and B. garinii, the three main genospecies endemic in the US, Europe and Asia. All four HuMabs completely protected mice from infection at 10 mg/kg in a murine model of tick-mediated transmission of B. burgdorferi. Conclusions. Our study indicates that OspA-specific HuMabs can prevent the transmission of Borrelia and administration of these antibodies could be employed as pre-exposure prophylaxis for Lyme disease
    • …
    corecore